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Abstract--The two-fluid equations describing transient nonequilibrium liquid-vapour flow have been used 
to derive a general dispersion relation for acoustic waves. The analysis is valid in principle for both 
dispersed and separated flow regimes. In contrast to previous work, the predicted sound speeds and 
attenuations depend only on measurable properties of the flow. The model can apply over a wide range of 
angular frequencies (up to 1-10 6 Hz for steam and water), under conditions where the scattering of waves by 
individual bubbles and droplets is unimportant. Predictions are made for sound speeds and attenuations in 
both bubbly and annular flow at low Mach numbers. Agreement of the theory with available data is shown 
to be reasonable. 

i. INTRODUCTION 

Determination of the speed and attenuation of acoustic waves in a vapour-liquid flow has 
applications in several important areas. These include the prediction of the onset of instability in 
parallel boiling channels (Ishii 1976), and the analysis of choked flows (Bour~ et al. 1976). 
Acoustic wave measurements are of fundamental interest and have provided physical insight 
into the nature of multiphase systems in such diverse areas as plasma physics and crystallo- 
graphy. 

In the published literature, two methods have been used for calculating sound wave 
properties in gas-liquid systems. One approach has been to consider the interaction of waves 
with individual bubbles and to use a statistical scattering theory to determine the propagation 
and attenuation of the wavefront (Morse & Feshbach 1953; Trammell 1962). This method 
predicts resonance absorption when the wavelength is comparable with the bubble size. At 
larger wavelengths, energy absorption by individual bubbles is not important. It is then possible 
to adopt a continuum theory in which the two-phase mixture is treated as a compressible fluid 
with suitably averaged properties (e.g. Mecredy & Hamilton 1972; Hsieh & Plesset 1961). The 
continuum model has the advantage that it can in principle readily provide a general dispersion 
relation valid for arbitrary flow regimes, including the effects of relative motion between the 
phases. 

Mecredy et ai. (1970) and Mecredy & Hamilton (1972) derived a detailed continuum model 
for sound wave propagation in vapour-liquid flow by using six separate conservation equations 
to describe the flow of the vapour and liquid phases. This is the so-called "two-fluid" 
representation of vapour-liquid flow, which allows for non-equilibrium mass, heat and momen- 
tum transfer between the phases. Results indicated that in a bubbly liquid high frequency waves 
travelled an order of magnitude faster than low frequency waves. However, the analysis of 
Mecredy & Hamilton (1972) contained the important assumption that evaporation and conden- 
sation rates were controlled by kinetic theory limitations. In consequence, predicted sound 
speeds were .found to depend strongly on the assumed accomodation coefficients for molecular 
transfer. Since these coefficients are unknown functions of pressure, temperature and liquid 
cleanliness, etc. their results implied that sound speeds and attenuations could never be 
confidently predicted for a vapour-tiquid system. 

The object of this paper is to develop a model for sound-wave propagation in nonequili- 
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brium vapour-liquid flows which predicts sound speeds and wave attenuations dependent only 
on measurable flow properties. 

It is shown that in most practical cases of steam-water flow, mass-transfer rates are 
controlled by heat conduction in the liquid phase, and are not limited by kinetic theory as 
previously assumed. New acoustic wave dispersion relations are derived on this basis using the 
two-fluid conservation equations. 

Frequency dependent sound velocities and attenuation'rates are calculated for both dispersed 
and separated flow regimes with flow velocities up to a few metres/second. Results are compared 
with available data and with the predictions of scattering theory in the bubbly flow limit. 

In addition to practical applications, this work provides a useful test of the hydrodynamic 
and constitutive equations inherent in the adopted flow model. 

2. G O V E R N I N G  E Q U A T I O N S  

Two-fluid conservation equations 

We use the two-fluid model of vapour-liquid flow, which incorporates six separate conser- 
vation equations for the flow of the gas and liquid phases, supplemented by equations relating 
interphase mass, energy and momentum transfer rates to averaged phase properties. This 
two-fluid model forms the basis for several recent analyses of transient fluid flow during water 
reactor depressurisation (e.g. Solbrig et al. 1976; Hancox et al. 1975; Harlow & Amsden 1975). 

General equations of the three-dimensional two-fluid model are given by Ishii 0975). To 
simplify we consider a unidirectional flow parallel to the axis z of a constant area duct, and 
average the conservation equations across the duct area. Making the conventional simplifying 
assumption that the average of products of .dependent variables over the duct area is identical 
to the product of averages the resultant one-dimensional equations for the conservation of mass 
momentum and energy of phase k are, respectively: 

o (,~ok)+ o 
~-t ~z (akpkUk) = Fk, [1] 

~uk + Op _ 
akPk ~ + Ul~kpk --~Z ak ~-~ -- ( Uki -- Uk)Fk + rki + "rkw, [21 

aWkTk ,~& + u,aw~Tk O& 0 ( OT~'~ + a Ot "~z = ~k + Fk(hki - hk) + qikai + rki(Uki -- Uk) - - -~  ak~, -'~-Z ] q~,k ,~* [3] 

where Uk, Pk, rk, Sk, hk, ~k and ak denote respectively velocity, pressure, density, temperature, 
specific entropy, specific enthalpy, thermal conductivity, and volumetric concentration of phase 
k. [These are duct averaged values, which are also time averaged in the sense described by Ishii 
1975)]. Fk is the rate of increase of mass of phase k per unit mixture volume due to phase 
change, and rki, r~w represent the drag force on phase k per unit mixture volume due 
respectively to interfacial and wall shear, qik and q,~k are the heat fluxes into phase k across the 
interface and duct wall respectively, ai is the interface area per unit mixture volume and awk is 
the duct wall area per unit mixture volume in contact with phase k. ~k denotes the viscous 
energy dissipation due to wall forces. The variables subscripted ki are properties of phase k in 
the neighborhood of the interface. Throughout the paper k will refer either to the gas phase 

k -= G, or the liquid phase k - L. 
Equations [1]-[3] treat the two-phase mixture essentially as a continuum with averaged 

properties, and hence can only describe the propagation of acoustic waves in the limit when 
details of the flow structure are unimportant. This means that for present purposes we must 
confine our attention to wavelengths which are large compared with bubble radii, average 
bubble separations, liquid film thicknesses etc. Sound waves of higher frequencies can excite 
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resonances in individual bubbles, which cannot be described by a continuum theory (Minnaert 
1936; Hsieh 1976). A comparison of the present theory with predictions of Trammelrs (1962) 
scattering theory, which allows for resonant absorption by bubbles, is given later in the paper. 

Constitutive and state equations 

In order to integrate [I]-[3] additional relations are required to define conditions at the 
interface and to express the interphase mass energy and momentum transfer in terms of the 
bulk phase properties. These are provided by the following assumptions, applicable to vapour- 
liquid flow. 

(i) The phase pressures are equal 

PL = PC = P. [4] 

Outside the region of bubble resonance differences in the phase pressures can only arise 
because of surface forces, which are usually negligible. For example, in the case of boiling 
water at atmosphericpressure [4] is accurate to within 1% if the bubble size exceeds 0.1 ram. 

(ii) The liquid adjacent to the interface is saturated i.e. 

T i L  = T S A T ,  [5] 

where TsAr is the saturation temperature at the system pressure. The justification for this 
important condition is given in appendix A. 

(iii) Evaporation and condensation rates are controlled by heat transfer from the liquid to 
the interface. This assumption, which is usual in bubble growth analysis, is justified because q~6 
is typically only a few per cent of qiL when the interface is at the system saturation 
temperature. Neglecting qio and the small shear work term in an interracial energy balance 
gives: 

FL = - FC ---- qiLa'~h6L [6] 

where hGL is the latent heat. 
The magnitude of the heat flux in a periodic temperature field is given in section 3 below. 
(iv) The mutual drag force per unit volume ~k~ is assumed to be a function of the relative 

velocity between the phases, u,, and its time derivative, ~i~, 

Tk i m 7k i (Ur  ~ ~r)'~ Ur ---- UG --  UL, [7] 

(Newton's third law implies that the drag forces are equal and opposite so that ¢~i = -TU).  "rki 

will consist generally of both inertial and viscous components. 
(v) The velocity field is continuous across the interphase boundary, with the interface 

velocity equal to the bulk velocity of the liquid phase, 

UiG = UiL ~" U L. [81 

This is reasonable for separated flows when (uG - UL) can be large. In the bubbly flow regime 
the interface velocity will be closer to the bulk velocity of the gas u6. However in this case the 
large mutual drag forces ensure that UL ----" UG: thus the use of [7] introduces only a small error. 

(vi) The duct wall is everywhere wetted so that: 

a~ = 0. [9] 
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(vii) It is assumed that the vapour obeys the perfect gas state equation 

p = rpoT~, [101 

where r is the gas constant per unit mass. Liquid compressibility is retained in an approximate 
way by adopting a simplified liquid state equation which neglects the thermal expansivity of the 
liquid: 

dp/dpL = CL 2, [ 1 1 ] 

Here cL 2 is the liquid sound speed, assumed independent of temperature. 

3. LINEARISATION OF EQUATIONS, AND DERIVATION OF DISPERSION RELATION 

Propagation o f  small  periodic disturbances 

We consider the motion of small amplitude monochromatic waves of frequency to, wave- 
number k, travelling along the duct axis z. In the disturbed flow oscillations in the primary 

variables are given by: 

~b = ~o+ t#' exp i(tot - kz) [12] 

where $ -- p, ~, p, u, a, etc. ~bo is the value of ~ in the undisturbed flow and $' ~ ~ko. Terms of 
higher than first order in the primed variables are assumed negligible. 

It is assumed that in the unperturbed (but not the perturbed) flow the phases are  in 

equilibrium with each other, and with the duct walls. 

Linearised trans/er  equations 

The rates of interphase heat, mass, and momentum transfer will all be perturbed during a 
wave cycle and changes in each of these quantities will influence the velocity and attenuation of 
an acoustic disturbance. The transfer rates during the cycle are given as follows: 

(a) Heat  trans[er. Since the undisturbed flow is in thermal equilibrium the unperturbed heat 

fluxes are zero so that qiko = qwkO = 0. During the wave passage the fluxes across the interface 

and wall are: 

and 

qiL = q[L exp i(tot - kz)  

q~k = q ' ,  exp i(tot - kz). 

[13] 

[141 

A restriction on frequency allows us to neglect the contribution of convection to q~L. This 
condition is obtained by noting that the ratio of the diffusive component of q~L to the 
convective component is of order the ratio of the thicknesses of the convective and diffusive 
boundary layers, 8c and 80 respectively. Now for a laminar boundary layer with zero relative 

velocity at the interface: 

8c ~ (vLLJu,) I/: 

where u r is the relative velocity vL the liquid kinematic viscosity, and Ls is a characteristic 
length. Since 8o - (DLIto) ~/2, where DL is the liquid thermal diffusivity, 

vtLsto 
8d8o-  u,DL" 
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For convection in the liquid to be ignored 8c/8o ~" 1, which implies the frequency restriction: 

ca ~. DLU,I(VLL,). [15] 

For dispersed flow Ls is of order the particle size and is small but u, is generally close to zero; 
for separated flows where ur is large, Ls is of order of the duct size, which is also large. In most 
practical cases of steam/water flow [15] does not impose a severe frequency restriction, and we 
are justified in ignoring convection entirely. 

The conductive heat flux in the liquid can be calculated approximately by solving the 
one-dimensional Fourier equation in the liquid close to the interface. The amplitude of the heat 
flux perturbation is related to the amplitude of the pressure perturbation p' by (see Appendix B) 

t q iLai -- caaj0 ' [ 16] 

where caq is a complex frequency defined by 

caq = ca li:¢LDL-li2 ai(d T/dp )sAT exp (i~-14). 

(dTldp)s^T is the gradient of the saturation line. 
Equation [16] is valid provided the diffusive thermal boundary layer thickness 80 ~ (DL/¢O) 112 

is small compared with the bulk dimension of the liquid phase, that is to say only a small 
fraction of the liquid phase undergoes a temperature change. This condition can be stated as: 

a r ~ o , ~ . ( l - a )  or ca~,DLa2(1-a) -~ [17] 

where a --- a~ = 1 - aL. For water DL --- 10 -7 m 2 s - l ,  and since for conditions of practical interest 
(ca > 10 Hz) 8D < 0.1 ram, it follows that [17] is usually satisfied, even for finely dispersed flows 
(ai large). Because the thermal boundary layer is thin, there is a steep temperature gradient near 
the interface. Hence the assumption that the interface temperature is equal to the bulk liquid 
temperature is not appropriate for an analysis of acoustic wave propagation in vapour-liquid 
mixtures. This assumption is implicit in the non-equilibrium kinetic theory analysis of Mecredy 
& Hamilton (1972). 

The heat transfer to the vapour q~ will be ignored in formulating the linearised energy 
equation for the vapour. This term determines whether the small amplitude pressure changes in 
the vapour will be effectively isothermal or adiabatic. Ignoring it only introduces errors of order 
~ / y -  1 into the calculated sonic speed, y being the ratio of specific heats. 

Since we consider only those flow regions in which the pipe walls are completely wetted 
there is no direct heat transfer between the walls and the vapour. Heat transferred to the liquid 
phase is proportional to the fraction of the wetted perimeter in contact with that liqui d actually 
undergoing a temperature change during a wave cycle; this is of order the fractional volume of 
liquid contained in the thermal boundary layers enclosing the vapour-liquid interface, a,6o(l - 

a) -~, and is very small provided frequency condition [17] is satisfied. Thus for conditions of 
present interest we may take 

q ~  = qwL = 0. [ 18] 

(b) Mass transfer. During the wave passage it follows from [6], [13] and [16] that 

n 

F~ = - FL = -- ~ exp i(cat - kz). 
e L  

[19] 

(c) Momentum transfer. For small periodic changes in the liquid and vapour velocities the 
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interphase drag may be expanded in the linear approximation to give (c.f. 17]), 

= • ( u c -  uL) exp i(tot - kz) ;  TGi __ --  7L i TGiO _~ t 

where 

[20] 

The form of 7~,-, TL~ depends on the flow regime. Specific examples are inserted for illustrative 
calculations given in section 4. 

Wall shear effects will be ignored in formulating the general dispersion relations: hence we 
put ew, qb = 0. The effect of wall forces on acoustic wave propagation, which is usually small, is 
discussed below. 

L i n e a r i s e d  c o n s e r v a t i o n  e q u a t i o n s  

Substituting the perturbed forms[12] into the conservation equations [1], [2], [3] and using 
the perturbed transfer rates qiL, Fa and ~'ai given by [13], [16], [19] and [20] we obtain the 
following six linear homogeneous equations in six unknown primed quantities: 

• t " ! • i 
- t k a p c u G +  t toGap6+ t o q h ~ p '  + ~toopGa = 0 

. - 2  t o  h - l ~  , - i k ( l  - a ) p L u ~ +  [i~L(I -- a W L  - q 6LIP -- i to tpLa '  = 0 

[iapGto6 - z ' ] u b  + ¢'uL+ [ t o q h b ~ ( u L -  u ~ ) -  i k a ] p '  = 0 

' ' - r ' l u  ' i ( l - a ) k p ' = 0  ¢ uo+ [i(1 - a)pLtoL J L--  

~ u b -  ~u ~ + [itoGpGaTSG p + a~6k2cr2/rpo]pG'+ [i¢oopc, a T S ~  - ae~ k2 / rpa]p  ' = 0 

[i(1 - a )pL  CoL to L -- (1 - a )C-L kZ] T 'L-  toqP ' - - 0  

[211 

where CoL is the liquid specific heat at constant pressure. These equations are, respectively, the 
continuity equations for the gas and liquid, momentum conservation equations for the vapour 
and liquid and the energy conservation equations for the vapour and liquid. Note that the 
vapour energy equations and the liquid continuity equation incorporate the linearised state 
equation for the vapour and liquid phases (see [10], [11]): 

p ' -  c 2 p b -  r p o T b  = 0, 

p ' - -  CL2DL = O. 

For convenience we have dropped the zero subscripts from the unperturbed variables and used 
the additional notation: 

a = a6 = (1 - aLL 

(OSo  , 
SoP= \--~-P/o and So p = ~('~'p/p 

= ¢ o i  + (uG - UL)¢', 

c~=P-- 
Po'  

too = to - u o k ;  toL = to -- ULk. 
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In deriving [21] we have introduced an additional simplifying approximation by ignoring terms 
in the density, pressure and entropy gradients of the undisturbed flow (#pGolOZ), (gpo/OZ), 
(DStolDtG) etc. An order-of-magnitude comparison shows that these terms only become 
important when the change in the velocity of the undisturbed flow over distances of order one 
wavelength is of order the sound velocity; we can therefore ignore them inmost  cases of 

interest. 

General dispersion relation 
Eliminating a '  between the first two of [21] reduces the set to five linear equations. The 

secular equation of this set provides the dispersion relation for periodic disturbances. With a 
little algebraic manipulation this can be written in the determinantal form: 

i(1 - a)pLCpLlaL -- (1 -- a)(Lk 2] x 
- i t '  (1 -a)#LOJ r - ( I - a ) k  0 

OlpGia G O4}GO~ G + ( I - a )pLCaL ¢aq( U L -- U G ) ] ihGL - k 0 

- k~LPLPG a -- kPLPG[O~Ga + ~ L ( I  - a ) ]  [¢aG~LPG ( 1 -- a)CL  -2  -- (¢aGp G - ¢al.,PL)iaJihGL] ¢aG(aL.OLa 

0 [~GaPG TSG P - a~Gk2[rP G] [baGaP G TSoJ, + a~Gk2cT2lrp G ] 

Note that the thermodynamic derivatives satisfy the following relations: 

=0 

[221 

- SoP/So p = c ,  2 = 7PIPG TSG p = C~GI(pGr) .  [23] 

where CvG and y are respectively the specific heat at constant volume, and the specific heat 
ratio of the vapour phase. 

Equation [22] is the general dispersion relation for periodic disturbances but is rather 
cumbersome in its present form. To simplify we ignore terms in the linearised energy equations 
due to axial heat diffusion which for steam-water flows are negligible for frequencies much 
smaller than 1 GHz, [they do of course dominate the limit ~o--, o0 (see section 4 below)]. 

Equation [22] then has six independent solutions k,.(oJ) corresponding to two "path waves" 
advancing with the bulk phase velocities UG and UL, and two "composite waves" which are a 
mixture of acoustic and kinematic perturbations. A useful analytic approximation to the 
acoustic wave dispersion relation can be made by considering flows at low Mach numbers UG, 
UL ~- oJ/k such that raG, <or = o~. The composite waves then degenerate into two path waves and 
two acoustic waves. Multiplying out the determinant in [22], using [23], the wavenumbers of the 
acoustic disturbances can be shown to be roots of the quadratic equation: 

( l  - = )tpL  + p a l  - = ) j  - ,5  + { - =)p o L 

+k~OtpG~[(l-a)ao~pL+i~"]}k+i~l~o2(1--a)pL:kq 

• 3 rpG(1  -- a ) .  p L a  _ ~ ] [ i ~ ' p m  + (l - a ) a p L P c , ~ ]  = O, 
- uo LI -'---"'Y"2~'r IRGLOJJ [24] 

where p,, =pGa+pL(1--a) is the two-phase mixture density and kq =OJq(UG--UL)hGIL is a 
characteristic wave number associated with the momentum transfer during the phase change. 
PGL denotes the density difference pG -PL. 

Effects of pipe wall friction 
The effects of wall shear on wave propagation can be examined by introducing terms of the 

form l"w = ~f~ou21Dh and ~ = m-w into the momentum and energy equations [2] and [3], where 
Dh is the hydraulic diameter and fw is the D'Arcy wall friction factor. Linearising the resultant 
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equations for a homogeneous flow (ua = uL) shows that wall shear increases the calculated 
wave speed by an amount of order [w2u2/8oj2Dh 2. For flows of a few meters per second, for 
which [24] is applicable, this represents only a small percentage correction in c, and we are 
justified in ignoring wall shear effects in the above derivation. 

4. R E S U L T S  A N D  D I S C U S S I O N  

Equation [24] has two complex solutions in k corresponding to waves moving upstream and 
downstream. When there is no interphase relative motion in the unperturbed flow the solutions 
are equal but of opposite sign. However, when u, is finite the two solutions differ slightly in 
magnitude. Denoting the solutions by kl, k~ the velocities and attenuations of these waves are 
given by, respectively, 

c,.2 = og{real part of k,.2}, [25] 

r/i.2 = {imaginary part of kL2}. [26) 

Numerical examples 
Results of illustrative calculations for c and 77 are plotted in figure l for a finely dispersed 

bubbly flow (bubble radius Rb = 0.25 mm) for various low void fractions at three pressures up 
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Figure la. Sound speed (ms -]) vs oJ (Hz) for bubbly steam-water flow. 
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Figure lb. Wave attenuation (m -I) vs co (Hz) for bubbly steam-water flow. 

to 70 bar. The unperturbed phase velocities have been assumed to be equal (Uoo = ULo). The  

interfaciai area and drag relationships used in these calculations are standard forms given in 
table 1. 

It can be seen from figure l(a) that because of non-equilibrium effects the sound speed 
is strongly dependent on the frequency of the wave, tending to a finite limit at high 
frequencies (see [31] below). Only at low frequencies is the sound speed near the homogeneous 
equilibrium value. Figure l(b) shows that the attenuation is large above ~10~Hz varying 
approximately as (angular frequency)", where n lies between 0.6 and 0.75 and depends on the 
pressure. 

Figure 2 shows results of similar calculations for a high void fraction annular flow. The 
adopted interracial area and drag relationships are again listed in table I. Results are given for 
vapourfliquid relative velocities of 1 and 2 m/s in a tube of 20 mm diameter. In all cases the 
sound speed rapidly increases with frequency to the so-called "stratified" limit, when momen- 
tum transfer effects become negligible (c.f. [29] below). The attenuation is typically an order of 
magnitude less than for bubbly flow. 
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Table 1. Expressions for interracial area concentration, ai, and interphase drag, ~-~, used for bubbly and annular two-phase flow 

Bubbly flow Derivation Annular flow Derivation 

2 
al = 3a/Rb Derived assuming a uniform distribution a~ = ~- (1 + a ) 

of spherical bubbles of mean radius/~b. 

zoi = - 9ap, LuJ2Rb z - ~pL 

1 + 2a rou, du,] 
I - :  

= -9at~d2Rfl 
. a  l+2a 

Obtained from the expression for the drag 
on a single sphere given by Brodkey 
(1968). The first term is the Stokes viscous 
drag, and the second an inertial drag due to 
the virtual mass of the bubble. 

Obtained using the perturbations (10), at. 
being liquid viscosity. 

fi 2 
"gGi = -- ~ pGaiNr 

where 
[~ = 0.005(1 + ~) 
e~75(1-a) 

r'(= Orai/Oua) 
= -flp~aiu, 

Derived assuming a 
liquid film of 
uniform thickness. 

Derivation discussed 
by Wallis (1%9). 

High frequency limits o f  solution 

It is interesting to consider further the high frequency limits of the solutions for separated 

and dispersed flows, 
(a) Separated flow. For this case the drag rci contains no acceleration dependent terms. 

Consequently r '  is independent of to so that as to, k--->oo all terms contributed by momentum, 
mass and heat transfer appearing in [22] become negligible. Also the axial heat diffusion terms 

in the fourth row of the determinant become large compared with the terms in the entropy 

derivatives. Evaluating the limit we obtain a dispersion relation for acoustic waves of the form: 

( ~ ,  OtpL]t.-2 
- -1- "T-frt~ = 0 OtpLtoL 2 + (1 - ot)potoo 2 toL2too 2 [ CL CT J I271 

where CT = X/P/Pc is the isothermal sound velocity in the gas. When there is no interphase 
relative motion in the undisturbed flow, so that to~---tOL = tO-  uk, [27] has real solution for k 

given by:  

to/k = u, to/k = u ± Csr=, [28] 

where 

CSToo = {pLOi + pG( l  -- O[)}112~ ( I f  ¢t )pG OipL ) -I/2 
c L  2 ........ I 

t 
[291 

is the well-known so-called stratified sound speed for the mixture, obtained for example by 
Grolmes & Fauske (1971) by neglecting interphase mass, heat and momentum transfer. 

Lyczkowski et al. (1975) show that the wave velocities given by [28], to/k = u, u +- Csr= are 
characteristic velocities for the system of linear differential equations [11, [2], [3] when the 
velocities of the phases are equal, and the transfer terms contain no time or spatial derivatives. 
In the flow of a perfect gas these characteristic velocities can be identified with the propagation 
velocities of small disturbances. In a separated two-phase flow in which the phase velocities are 
equal, the characteristic velocity evidently corresponds to the high frequency limit of the 
acoustic wave velocity. Inspection of figures 1 and 2 show that sound speed increases with the 
frequency, which suggests that within the framework of the continuum model the characteristic 
velocities are the maximum velocities at which information can be transmitted upstream or 

downstream. 
It is interesting to note that the condition that the characteristic velocity is zero has been 
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Figure 2a. Sound speed (ms-') vs oJ (Hz) for annular steam water flow. The solid line is for UG ' UL = ! ms-' and 
the broken line for uG - UL ~--  2 ms-L 

traditionally adopted as a choking criterion in one-dimensional models of both single and 
two-phase flows. The above considerations tend to confirm the intuitive argument that in the 
continuum model for two-phase flow this condition describes the state where the flow velocity 
is sufficient entirely to prevent the transmission of information upstream. This result, which is 
known to be valid for ideal gas flow, also holds for dispersed flows (see (b) below). 

(b) D i s p e r s e d  f l o w .  For this case the drag l"ai depends on the acceleration of the gas phase 
through virtual mass terms. Consequently ~-' depends linearly on cao, and momentum exchange 
between the phases is important even in the high frequency limit. Since in a dispersed flow 
Uoo = ULO we can write caG = caL ~-- ca -- uk  for this case. Using this fact, and the expression for I-' 
given for bubbly flow in table 1, [22] becomes, in the limit ca -~ ®: 

(ca - uk)2{(ca - uk ) 2 - k 2 c2D=} = 0 

where using the fact that PO/PL ~ 1, c ~  can be expressed to a good approximation as: 

[30] 

c 2 PC, P L f 2 a ( 1 - - a )  2 , ] f p o ( 1 -  a ) _  pLa] -l 
J L  L cT J 

which is similar to the form derived by Mecredy & Hamilton (1972). 

[311 
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Equation [30] has real solutions in k given by: 

~lk  = u, ~lk  = u ± co,.  [32] 

We note that since ~'Gi contains terms in the spatial and time derivatives the characteristic 
velocit ies implied by [21] are different in this case than for separated flow; in fact they can 
again be shown to correspond to the limiting sound speeds in the fluid obtained from the second 
of the solutions [32]. Thus the discussion given in (a )above  applies also to this dispersed flow 

case. 

Comparison o f  present theory with predictions o f  other models 

Figure 3(a) compares sound velocities calculated from [24] with the theoretical results of 
Mecredy & Hamilton (1972) who also used a continuum two-fluid model but, it will be recalled, 
neglected the temperature gradients at the interfece and calculated mass-transfer rates using 
kinetic theory. The large differences between the predictions of the two models are a direct 
consequence of these inappropriate interphase mass  and energy transfer assumptions. Figure 
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Figure 3b. Comparison between present theory and predictions of the scattering theory of Trammell (1962) as 
calculated by Kietland (1967). 

3(a) highlights the strong dependency of Mecredy & Hamilton's results on the highly uncertain 
accommodation coefficient, o,. 

A comparison of the present model with the predictions of Trammell's (1962) scattering 
theory (calculated by Kielland (1967)) for a bubbly mixture, is shown in figure 3(b). The most 
noticeable differences here are the presence of the volume resonance near 3.104Hz and the 
prediction of the scattering model that the sound speed tends to the liquid sound speed, CL, in 
the high frequency limit. These trends have been qualitatively confirmed .by experiment (see 
below). Both analyses, would be expected ~{o give similar results in the low frequency limit, 
when the wavelength is such that A ~,/~b. However, Trammell's theory does not allow for 
interphase momentum transfer. The effect of artificially neglecting shear in the present analysis 
(~-'--) 0) can be seen in figure 3(b) to significantly increase the agreement between the theories 
below the resonance frequency. 

Morioka & Matsui (1975) developed a model of acoustic wave propagation in a stratified 
flow which, while neglecting interphase mass, heat and momentum transfer, retains velocity 
components perpendicular to the duct axis. Their calculations showed that the phase velocity of 
the dominant mode was very close to the stratified speed predicted by a one-dimensional model 
([29]) when the interfacial transfer terms are set to zero. This tends to support the use of a 
one-dimensional approximation for calculating wave-speeds in separated flows. 

Comparison with experiments 

Weisman et aL (1976) have measured the phase velocity of small amplitude sinusoidal 
pressure fluctuations in a flowing vapour-liquid mixture of a fluorocarbon (Freon-113). Because 
the wave frequency was low ((o = 7.85 Hz) the continuum condition (A ~, Rb) applies, and since 
the thermal diffusivity is small, the thin thermal boundary layer condition [17] is also satisfied. 
Thus the present model is applicable for the test conditions. Bubble sizes were not measured in 



316 K, H. ARDRON and R. 8. DUFFEY 

the experiments: however, use of an empirical relation given by Wallis (1969) (of the form 
Rb ~ (s/gpL) 112 where s is surface tension and g gravitational acceleration) suggests that under 
the stated conditions bubble radii were -1  mm. The present theory is compared with the 95% 
confidence limits of the data in figure 4: agreement is generally within the experimental scatter, 
providing encouraging support for the model. 

Feldman et al. (1971) and Kokernak & Feldman (1972) have reported some measurements 
of sound velocity in bubbly stream-water mixtures and in a Freon-12 liquid-vapour mixture. 
Because these experiments were directed towards investigating bubble resonance effects, the 
present model would be expected to apply only over a small part of the measured frequency range. 

The present theory is compared with the Freon data in figure 5(a). Agreement with the data 
for small bubble sizes is reasonable, within the region of validity of the model. At high 
frequencies, the sound speeds tend to the sound speed in the liquid (cL = 500 m/s) as predicted 
by scattering theory. The data for large bubble sizes appeared to show a low frequency 
resonance which was inconsistent with the stated bubble dimensions, as pointed out by 
Kokernak & Feldman (1972). This suggests the presence of bubbles larger than the stated size 
and may account for the relatively poor agreement for this case. A similar difficulty was found 
by Kokernak & Feidman in fitting these results to a scattering model. 

The present theory is compared with the steam-water data in figure 5(b). Comparisons here 
are somewhat inconclusive since there were substantial uncertainties in the reported void 
fraction which was believed to lie in the range a = 0.03-0.3%. Best agreement with the data is 
obtained using the present model if a void fraction of 0.03% is adopted. Feldman et aL (1971) 
found that scattering theory also gave satisfactory results if this value were assumed for a. 
Thus, these data are not inconsistent with the present analysis. 

Several investigators have attempted to resolve the mechanism of sound-wave transmission 
in iiquid-vapour mixtures by measuring the velocity of the leading edge of large amplitude 
pressure pulses (Semenov & Kosterin 1964; Karplus 1961; Grolmes & Fauske 1969). These data 
are very difficult to interpret since in the reported tests the pulses have been observed to 
broaden, with different points within the pulse width travelling with different speeds. This 
broadening is presumably attributable to combined effects of dispersion and departures from 
linear behaviour. It seems clear that without a detailed analysis of these effects (as given by 
Morioka & Matsui (1975) for an idealised stratified flow) velocity measurements of this type 
cannot be used to provide useful data about the transfer processes responsible for the 
dispersive properties of two-phase flows, which are of interest here. Experiments with 
monochromatic sound waves avoid these problems of interpretation. 
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Figure 4. Velocity of sound in Freon- 113 at ~ = 7.85 Hz. The shaded resion is the range of the data of Weisman 

et aL (1976). 
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Figure 5. Velocity of sound in liquid-vapour mixtures. Data are from Feldman et al. (1971) and Kokernak & 
Feldman (1972). 

5. DISPERSION RELATIONS PREDICTED BY SIMPLIFIED ONE-DIMENSIONAL 
MODELS OF TRANSIENT VAPOUR-LIQUID FLOW 

Equation [24] is derived from a detailed flow model allowing for non-equilibrium mass, heat 
and momentum transfer. A comparison with dispersion equations obtained from simpler models 
proposed for transient two-phase flow (e.g. for water-reactor loss-of-coolant analysis) gives 
insight into the consequences of the simplifying assumptions incorporated into these models. 

Figure 6 compares wave-speeds given by the full solution with predictions of a homo- 
geneous model in which interphase relative motion is forbidden (obtained by putting ~' = ® in 
[24]). It is seen that the effect of this particular restrictive assumption is negligible in low-quality 
bubbly flows at all frequencies because of the large effective bubble inertia. 

Also shown in the figure are predictions of the homogeneous thermal equilibrium flow model 
(which assumes infinite rates of interphase mass heat and momentum transfer) and a homo- 
geneous frozen-composition model (assuming equal phase velocities and zero heat and mass 
transfer). These latter models predict wave propagation without dispersion or attenuation and 
only agree with the present theory in the limits of low and high frequencies. 

An interesting attempt to correct the homogeneous equilibrium model for finite heat and 
mass-transfer rates has been described by Kroeger 0976) and Bauer et aL 0976) who propose 
an arbitrary relaxation equation for quality of the form: 

a X  ~ u --=aX X~.q - X 
ot Oz 0 

MF VoL 4. No. 3---F 
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Figure 6. Comparisons of sound speeds predicted using various simplifying assumptions. Calculations are for 
bubbly steam-water flow p = 7.106 N/m 2, a = 0.05, Rb = 0.25 mm. 

where Xeo is the quality that would exist were the phases always in thermal equilibrium. With 
the continuity and momentum equations for homogeneous two-phase flow, this equation leads 
to the dispersion relation: 

to2/ k 2 = (1 + i~O)( l l c~o + i~OIc~Eo)-' [331 

where ceo is the usual homogeneous thermal equilibrium sound speed and CNeO( = X/'),plap.) is 
two-phase sound speed for homogeneous flow in the absence of heat or mass transfer. Wave 
speeds predicted by [33] are compared with the full solution in figure 7. It is seen that although 
[33] predicts the correct behaviour in the limits to ~ 0 and to-* =, good agreement with the full 
theory over the range of intermediate frequencies cannot be obtained by adjusting the 
characteristic relaxation time, O. 
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Figure 7. Comparison of present theory with the relaxation model proposed by Kroeger (1976). Calculations are 
for bubbly stream-water flow, p -- 7.106 ]q/m 2, a = 0.05, Rb -- 0.25 ram. 

6. CONCLUSIONS 

One-dimensional two-fluid equations have been used to derive a new dispersion relation for 
non-equilibrium vapour-liquid flows. The model, which is valid if the sound wavelength is large 
compared with the scale of the flow structure, is applicable over a wide frequency range. 
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Predicted sound speeds and wave attenuation rates depend only on experimentally measurable 
properties of the flow. 

By taking conventional formulations for interracial area and shear, sound speeds and 
attenuations are calculated both for dispersed and separated flows at low Mach numbers. For 
low quality bubbly flows results of the theory are consistent with predictions of a scattering 
model, and are in agreement with available data to within the limits of experimental uncertainty. 

The results suggest that within the framework of the continuum model the choking criterion 
for a one-dimensional two-phase flow corresponds to a physical condition wherein pressure 
waves cannot be transmitted upstream of the choking region. This is consistent with the classic 
result for ideal gas flow. 

The full-non-equilibrium theory developed here has been compared with sound speeds 
predicted by simpler conventional models of transient two-phase flow. Comparison shows that 
because of the large effective bubble inertia, the homogeneous flow approximation is valid for 
bubbly flows. 

It is suggested that the use of monochromatic acoustic waves to examine two-phase flows 
would provide further valuable information on the boiling and momentum transfer processes. 

Acknowledgement--This paper is published by permission of the Central Electricity Generating 
Board. 
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A P P E N D I X  A 

JUSTIFICATION OF THE ASSUMPTION THAT THE LIQUID 
TEMPERATURE AT THE INTERFACE IS THE LOCAL 

SATURATION TEMPERATURE 

Bornhorst & Hatsopolous (1967) have shown using kinetic, theory that the mass flux in a 
liquid-vapour phase change can be expressed to a good approximation as: 

/ 20" \ al pahoL = ((To- (To-  Tsar)} JAIl 

where we have neglected pressure differences within the system. To is the bulk liquid 
temperature outside the interface thermal boundary layer and 0. is the accommodation 

coefficient. 
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An energy balance in the liquid at the interface relates Fo to qiL (c.f. [6]), 

Fa = --qiLaJh6L. [A2] 

Using [All, [A2], and expressing qiL in terms of T~L using [B2] and [BS] of appendix B, we can 
obtain the relation for Ta, during an acoustic wave cycle: 

(To -  TSAT) = (To - TiL){1 - [2 - tr\ /2ctrTo3 oj~2Q 12 i,,14 ) 
[--f-~ )~ DLh~Lp62 ) e 1 [A31 

which shows the interface remains effectively at saturation temperature provided the second 
term in the curly brackets is much less than unity. This term is analogous to the non-equilibrium 
parameter,//, defined by Bornhorst & Hatsopolous (1%7). Thus the necessary condition that 

Ta, = TsAr is satisfied provided: 

(22_~)  2 2h4 D PG GL L [A4] 
to ~. 2 ¢tr~L2 To3. 

The value of the accommodation coefficient ~r is very uncertain particularly for transient 
conditions. To evaluate the R.H.S. of [A4] we have adopted a minimum value of cr = 0.1 which 
is consistent with values given for water in the literature survey by Theofanous et ai. (1%9). For 
steam and water at atmospheric pressure, condition [A4] is satisfied provided to < 106 Hz; at 
p = 70 bar the corresponding condition is to < 108 Hz. 

A P P E N D I X  B 

CALCULATION OF THE DIFFUSIVE HEAT FLUX IN THE 
LIQUID AT THE INTERFACE 

The diffusive heat flux in the liquid can be calculated approximately by solving the 
one-dimensional Fourier equation in the liquid close to the interface. At a distance x from the 
interface we have 

02TL 1 aTL [nil 
--~T= DL Ot 

subject to the boundary conditions 

TIL--* To + T[L exp i((at - kz) as x --* 0} 
TiL ~ To as x ~ ~ " [B2] 

The solution of [BI] satisfying boundary conditions [B2] is 

TL = To+ T~L exp i(oJt - k z  - K ' x )  [B4] 

where 

K* = (o/2DL)1/2(1 - i). 
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The diffusive heat flux into the liquid phase is simply 

[OTL'~ = T' tol/2~ D -i/2 ex-  i(tot - kz + Ir/4), [B5] q,~ = - . L ~ , - ~ - L =  ° ,L L L . 

showing that the heat flux leads the driving temperature difference by 45 ° . 

Because the interface is saturated T~L = (dT/dp)sATP', where (dT/dp)saT is the gradient of 
the saturation line. Using this fact, and comparing [13] and [B5] we see that 

q[L al = toqp' [B6] 

where toq is a complex frequency 

toq = to tt2 ~L DL-tt2 ai(d T/dP )sAT exp (ilr/4). 


